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ABSTRACT

The predictability limits of tropical cyclone (TC) intensity over the western North Pacific (WNP) are
investigated using TC best track data. The results show that the predictability limit of the TC minimum
central pressure (MCP) is ~102 h, comparable to that of the TC maximum sustained wind (MSW). The spatial
distribution of the predictability limit of the TC MCP over the WNP is similar to that of the TC MSW, and both
gradually decrease from the eastern WNP (EWNP) to the South China Sea (SCS). The predictability limits of
the TC MCP and MSW are relatively high over the southeastern WNP where the modified accumulated cyclone
energy (MACE) is relatively large, whereas they are relatively low over the SCS where the MACE is relatively
small. The spatial patterns of the TC lifetime and the lifetime maximum intensity (LMI) are similar to that
of the TC MACE. Strong and long-lived TCs, which have relatively long predictability, mainly form in the
southwestern WNP. In contrast, weak and short-lived TCs, which have relatively short predictability, mainly
form in the SCS. In addition to the dependence of the predictability limit on genesis location, the predictability
limits of TC intensity also evolve in the TC life cycle. The predictability limit of the TC MCP (MSW) gradually
decreases from 102 (108) h at genesis time (00 h) to 54 (84) h 4 days after TC genesis.

1. Introduction the public to protect life and property in the affected
area. The accuracy of TC track forecasts has steadily
improved in recent decades along with a global re-
duction in forecast error for operational hurricane
forecast models (Elsberry et al. 2007; DeMaria et al.
Corresponding author: Dr. Ruigiang Ding, drq@mail.iap.acecn  2014). However, although many operational and research
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centers have made efforts to improve TC intensity
forecasts (Gopalakrishnan et al. 2011; Zhang and
Weng 2015; Ruf et al. 2016; Weng and Zhang 2016),
the TC intensity errors have decreased at a smaller
rate than the track errors over the same period. Par-
ticularly, the TC intensity forecast skill at shorter lead
times (24-48 h) has shown relatively little improvement
(DeMaria et al. 2014).

There may be several reasons for this. As reported by
Landsea and Franklin (2013), the forecast error of TC
intensity at 24 h is comparable to the limit of currently
observational uncertainty of TC intensity. In addition,
accurate TC track forecasts are not as heavily de-
pendent on model physics and model resolution. Fur-
thermore, the accuracy of TC intensity forecast may be
ultimately limited by the predictability due to the
chaotic nature of the atmosphere itself (Lorenz 1963,
1969; Palmer et al. 2014; Tao and Zhang 2015; Judt
et al. 2016). To further improve forecasts of TC
intensity, it is worth determining quantitatively the
limit of predictability of TC intensity (Emanuel and
Zhang 2016).

TC intensity is not only affected by the large-scale
environment, but also by complex physical processes,
making it difficult to assess error growth and intrinsic
predictability. Many studies of the predictability of
TC intensity have used the Weather Research and
Forecasting (WRF) Model (Zhang et al. 2014; Tao and
Zhang 2015; Zhu et al. 2016), idealized axisymmet-
ric models (Hakim 2011, 2013; Kieu and Moon 2016),
and statistical forecasting models (Kaplan et al. 2015;
Emanuel and Zhang 2016). For example, Zhang and
Tao (2013) explored the influence of environmental
parameters on the predictability of TC intensity
through a series of idealized simulations using the
WRF Model and indicated that the magnitude of ver-
tical wind shear may have an effect on the accuracy of
TC intensity forecasts. Similarly, Tao and Zhang (2014)
showed the impacts of uncertainty in the vertical wind
shear and the spatial distribution of moist convection
on the evolution of TCs and found that these un-
certainties decrease the predictability of TC intensity.
Brown and Hakim (2013) and Hakim (2013) used ide-
alized simulations of a mature TC in an axisymmetric
model to examine the predictability of TC intensity,
suggesting that the intrinsic predictability of TC near-
surface winds is lost after ~72 h. A recent case study by
Judtet al. (2016) indicated that the forecast error of TC
surface wind shows rapid growth of small-scale un-
certainties, but the mean vortex circulation of the TC
is comparatively resistant to upscale error growth.
Therefore, the relatively long predictability of the

Brought to you by Peking University | Unauthenticated | Downloaded 05/23/22 03:15 AM UTC

MONTHLY WEATHER REVIEW

VOLUME 146

environment and the mean vortex could be exploited
for longer-term predictions of TC intensity.

The above modeling studies have provided a better
understanding of TC intensity predictability, which is
helpful in improving the forecast skill of TC intensity.
However, some of the aforementioned studies are
limited, as they rely heavily on idealized numerical
models with periodic boundary conditions and/or start
from identical initial conditions (Judt et al. 2016).
While numerical models have been helpful in
assessing the influence of the uncertainty of envi-
ronmental variables on the forecast uncertainty and
predictability of TC intensity, almost all numerical
models of TCs used in previous studies (Weng and
Zhang 2016; Zhu et al. 2016), such as the WRF Model,
are imperfect, and model shortcomings hinder the
simulation of TC intensity. The estimate of TC in-
tensity predictability is significantly influenced by
model error owing to the model deficiencies; conse-
quently, such an estimate cannot truly represent the
real predictability of TC intensity. Another challenge
is that our understanding of TC intensity pre-
dictability is derived mainly from analyses of TC case
studies. Although TCs are viewed as highly episodic,
isolated events, the characteristics of TCs vary widely
with genesis location, and the spatial distribution
of the TC intensity predictability limit remains
unknown.

The goal of this study is to quantitatively determine
the predictability limit of two different measures of
TC intensity [the minimum central pressure (MCP)
and maximum sustained wind (MSW)] over the whole
western North Pacific (WNP) using observational
data (observed TC best track data in this study). This
work builds on our recent work on the predictability
of TC tracks (Zhong et al. 2018, hereafter Z18), where
we use best track data to show that the mean pre-
dictability limit of all TC tracks over the WNP basin
is ~108h. The observed best track data include a
significant amount of position and intensity informa-
tion for TCs. Therefore, the best track data can be
used to determine the predictability limit of TC in-
tensity, as satisfactory models are not available to
predict TC intensity.

A method has been proposed to investigate the pre-
dictability of chaotic systems using the nonlinear local
Lyapunov exponent (NLLE) (Chen et al. 2006; Ding
and Li 2007). The NLLE allows the predictability limit
of dynamical systems, such as a chaotic system, to be
determined quantitatively. For a low-order chaotic sys-
tem, the leading NLLE mainly describes the average
growth rates of the initial error in the fastest-growing
direction. Meanwhile, to assess the actual atmospheric
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FIG. 1. Spatial distribution of genesis locations of all TCs over the
whole WNP basin. The red dots denote the genesis locations of
TCs. The lines at 120° and 141°E (the longitude of the mean genesis
location of all TCs over the WNP) are the longitudinal boundaries
of the three subregions: the SCS, WWNP, and EWNP.

predictability from observational data, a practical and
efficient algorithm known as local dynamical analogs
(LDAs), has been devised to enable the calculation of
the NLLE (Li and Ding 2011). Similarly, the limit of TC
intensity predictability in this work can therefore be as-
sessed from the observed best track data using the LDAs
algorithm. Here, it should be noted that the predictability
limit of TC intensity obtained in this work would be lower
than the intrinsic predictability, which may be achieved
only if the prediction model is perfect except for suffi-
ciently small error in the initial conditions.

The remainder of the paper is organized as follows.
Section 2 describes the observational data and introduces
the NLLE approach. The main results regarding the
predictability limit of TC intensity and its spatial distri-
bution are presented in section 3. Section 4 provides a
summary and discussion.

2. Data and methodology
a. Observational data

Tropical cyclone best track data were obtained from
the International Best Track Archive for Climate Stew-
ardship (IBTrACS) dataset, which combines the TC best
track data from all forecasting agencies into an inte-
grated dataset (https://www.ncdc.noaa.gov/ibtracs/index.php?
name=ibtracs-samples). The IBTrACS dataset consists
of the best estimates of the TC central position (latitude
and longitude), MCP, and MSW at 6-hourly intervals
(Knapp and Kruk 2010; Knapp et al. 2010). The pressure
and wind speed of the TC represent two metrics of TC
intensity, so the predictability limits of the TC MCP and
MSW are investigated separately using the best track
data. We use TC best track data for the period 1945-2015,
and the WNP basin is defined as the region 0°-30°N,
100°E~180° including the South China Sea (SCS).
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(a) The evolution trajectories of two analogous TCs
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FIG. 2. Schematic representation of the procedure used to calculate
the NLLE from the best track data. (a) The trajectory of an analog
of the reference TC at time #; (i = 0, 1, 2, . . ., k) is denoted as
an analogous trajectory. (b) Evolution of the intensity of an analog
of the reference TC at time ; ( = 0, 1,2, . . ., k) is denoted as an
analogous intensity. The growth rate of the absolute distance error
(absolute intensity error) between the reference trajectory (intensity)
and its analogous trajectory (intensity) is used to estimate the NLLE.

b. The NLLE approach

The NLLE approach can be used for quantitative
estimation of the predictability limit of atmospheric and
oceanic variables. For a variable x(f;) at time f;, the
NLLE A is defined as follows:

1 18U + Dl
18I

where A[x(ty), 8(%y), 7] depends on the initial state x(z)
of the reference orbit in phase space, the initial error
8(%), and the evolution time 7 (Chen et al. 2006; Ding
et al. 2007; Ding and Li 2007). The NLLE A mainly de-
scribes the growth rates of the initial error of the dy-
namic system. Based on the NLLE, the mean relative
growth of the initial error (RGIE), which is defined as
the ratio of the error at the evolution time 7 to the initial
error, can be obtained from

A[x(1y), 8(1y), 7] = 1)

B[8(1,), 7] = exp{A[8(1,), Tlr} — > (N — =), (2)

where ——> denotes the convergence in probability, and
A[6(ty), 7] is the ensemble mean NLLE of the dynamic


https://www.ncdc.noaa.gov/ibtracs/index.php?name=ibtracs-samples
https://www.ncdc.noaa.gov/ibtracs/index.php?name=ibtracs-samples

2744

(a) RGIE of TC Minimum central pressure (MCP)
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FIG. 3. The logarithm of mean error growth of all TC (a) mini-
mum central pressure (MCP) and (b) maximum sustained wind
(MSW) over the whole WNP basin, as obtained from the IBTrACS
best track data. Note that the mean error growth as a function of
the time is calculated only for the TC at the genesis time, but not for
each time of TC life cycle. The dashed line represents the 95% level
of the saturation value, as obtained by taking the average of the
mean error growth after 144 h.

system. Using the theorem from Ding and Li (2007), the
constant ¢ can be considered as the theoretical satura-
tion level of the RGIE, when the sample size N tends to
infinity. When the mean error reaches the saturation
level, the initial information is lost and predicting the
state variables of the system becomes meaningless.
Therefore, the predictability limit can be quantitatively
determined based on the theoretical saturation value
(Ding and Li 2007), meaning that an accurate prediction
of the system’s state variables cannot be made, once the
forecast lead time is beyond this upper limit of time.

If the equations governing dynamic systems are
known, the mean NLLE can be directly obtained from
the error evolution equations of the systems. However,
the error evolution equations are not known explicitly
for the real atmosphere, because of imprecisely known
parameters and external forcing terms (Ding and Li
2007). In this case, the NLLE may be estimated from
the atmospheric observational data using the LDAs al-
gorithm (Ding et al. 2010, 2011; Li and Ding 2011;
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FIG. 4. Probability (%) distribution of the predictability
limit of the TC (a) minimum central pressure (MCP) and (b)
maximum sustained wind (MSW) as calculated only for the TC
at genesis time.

Ding et al. 2016; Liu et al. 2016). In this study, the NLLE
method and the LD As algorithm are applied to find the
TC analog(s) that have similar characteristics, such as
similar track and intensity, and to estimate the pre-
dictability of TC intensity.

¢. Calculation of the NLLE from best track data

Figure 1 shows the spatial distribution of TC genesis
location (defined as the position of the first record of a
TC track in the best track data) over the whole WNP
basin for the period 1945-2015. More than 2000 TCs
formed during this period. For the purpose of the pres-
ent study we excluded TCs with lifetimes less than
48h and TCs with observational values of the MCP or
MSW missing during the entire period of the TC record.
The LDAs algorithm finds the TC analog(s) over the
WNP basin using the best track data. Similar to Z18,
analogous TCs are two independent TCs with similar
location and track length, with small initial distance and
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(a) Spatial distribution (MCP)
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FIG. 5. (a) Spatial distribution of the predictability limit (h) of the individual TC minimum
central pressure (MCP) and (b) the meridional mean profile of the predictability limit. Note
that the spatial interpolations are based on the TC genesis location.

evolutionary distance between their tracks.! Analogous
TCs should also have similar initial intensity and evo-
lutionary intensity.”

In this study, the initial errors of the TC MCP and
MSW are defined as the absolute difference in the MCP
and MSW between the analogous TC and its reference
TC at the genesis time, while the error at each time point
is the absolute difference between the MCP and MSW
of the two analogous TCs in their present locations
(PLs) (Fig. 2b). The definition of the NLLE means

! The initial distance is a distance (along a great circle) between
the locations of the two independent TCs at genesis time, ensuring
that the genesis locations of the two independent TCs are close.
Similarly, the evolutionary distance is the averaged distance of
several present locations between the two independent TCs
evolving over an early time interval since TC formed, which is to
ensure the similarity of the trajectories of the two independent TCs
over a short period of time.

2 The initial intensity is the first record of the TC intensity, and
the evolutionary intensity is the averaged difference in intensity
between two different TCs evolving over an early time interval
since the TC formed.
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that the error growth rates of the TC MCP and MSW
between the reference TC and analog TC can be cal-
culated using the IBTrACS best track data. Because the
analogous TCs are based on the similarity of the genesis
location and initial intensity, the mean error growth as a
function of time is calculated only for the TC at the
genesis time but not for each time of TC life cycle.
Likewise, the estimate of the predictability limit of TC
intensity is only for the TC at the genesis time unless
otherwise stated in this paper. A detailed description of
the algorithm used to find the analogous TCs and to
estimate the NLLE using the best track data is given in
appendixes A and B.

3. Results
a. Predictability limit of TC intensity

In this study, the mean error growth represents the
mean RGIE, which is defined as the ratio of the real-
time intensity error at the evolution time to the initial
intensity error. Figures 3a and 3b show the log of mean
errors in MCP and MSW for all TCs in the WNP, based
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FIG. 6. Asin Fig. 5, but for the TC (a) maximum sustained wind (MSW) and (b) its meridional
mean profile.

on the IBTrACS dataset. The linear evolution up to 72 h
in Fig. 3 indicates that the absolute intensity error
growth was exponential, with a growth rate approxi-
mately equal to the maximal Lyapunov exponent. After
72 h, the log of mean error grows relatively slowly, de-
parting from the linear evolution and entering a non-
linear phase with a steadily decreasing growth rate with
increasing time. In this phase, the absolute intensity
error started to deviate from the exponential growth.
Finally, the curves of the log of mean errors in MCP and
MSW reach the saturation level. Similarly, Kieu and
Moon (2016) also reported that the forecast error of TC
intensity in most of the operational numerical models
grows rapidly at the initial stage, and the errors of TC
intensity ultimately reach saturation after 72 h.

The log of mean error growth may be determined by a
range of mechanisms in the different phases of error
growth. In the initial stage in which the initial error grows
linearly, the change of TC intensity may be greatly influ-
enced by the initial conditions. However, at longer ranges
the intensity and structure of a TC depend more on
the large-scale environment than on the initial conditions
(Kieu and Moon 2016). Previous studies have suggested
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that such a saturation of the TC intensity error appears to
exist and may depend on specific environmental condi-
tions, physical approximations, or the type of numerical
model, such as an axisymmetric hurricane model or the
Hurricane Weather Research and Forecasting (HWRF)
Model (Yang et al. 2007; Hakim 2011, 2013).

The predictability of weather systems is limited by the
chaotic nature of the atmosphere. The saturation theorem
(Ding et al. 2010) implies that predictability is lost when
the mean error reaches the saturation limit. In the present
study, the predictability limits of the TC MCP and MSW
are defined as the time at which the error reaches 95% of
its saturation level, following Ding and Li (2007). As
shown in Figs. 3a and 3b, the predictability limit obtained
from the IBTrACS dataset for the TC MCP is ~102h,
which is comparable to (but slightly lower) than that of the
TC MSW, which has a predictability limit of 108 h.

As shown above, the mean error growth and the pre-
dictability limits of TC intensity obtained by the NLLE
approach are the average results of all TCs over the
whole WNP basin. Considering that the TCs generated
in different areas may have different characteristics (e.g.,
lifetime and intensity), we further use the NLLE method
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FIG. 7. As in Fig. 3, but for the mean error growth of the TC (a)—(c) minimum central pressure (MCP) and (d)—(f) maximum sustained
wind (MSW) in the (a),(d) SCS; (b),(e) WWNP; and (c),(f) EWNP.

to quantitatively estimate the predictability limits of the
MCP and MSW of the individual TC according to the
95% error saturation criterion. Figure 4 shows the prob-
ability distributions of the predictability limit of the TC
MCP and MSW, which are sorted from lowest to highest.
The modes of the predictability limit distribution for TC
intensity are 72 h for both the TC MCP and MSW, with
maximum probability values of 25.8% and 25.2%, re-
spectively. The next highest frequencies occur at 96 h and
then at 48h.

Moreover, to obtain the spatial distributions of the
predictability limits, the estimates of the predictability
limit of the individual TC MCP and MSW based upon
the TC genesis location are interpolated onto a 2° latitude
by 2° longitude spatial grid across the whole WNP.
Figures 5a and 6a show the spatial distributions of the
predictability limits of the TC MCP and MSW over
the whole WNP basin, respectively. The distributions of
the predictability limits of the TC MCP and MSW are
relatively consistent, with a pattern correlation coefficient
of 0.8, which is significant at the 0.01 level. In addition, for
both the TC MCP and MSW, the predictability limits
range from 60 to 144h over the WNP basin. There is a
relatively high predictability limit of the TC MCP over
the southeastern region of the WNP (>120h), which is
similar to the situation for the TC MSW. On the other
hand, the predictability limit of the TC MCP is relatively
low (84-108 h) in the west of the WNP (120.0°-140.0°E),
and this is also similar to the distribution of the TC MSW.
In addition, both the TC MCP and MSW have the lowest
predictability limits (<72h) in the SCS (110.0°~120.0°E).
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Overall, the meridional mean predictability limits of the
TC MCP and MSW are also higher in the eastern WNP
than in the SCS, and there is a gradual increase from
100°E to 180° in both cases (Figs. 5b and 6b).

As mentioned above, the distributions of the pre-
dictability limits of the TC MCP and MSW obtained by
the NLLE method closely resemble the spatial pattern of
the predictability limit of the TC tracks (corresponding to
Fig. 5in Z18), which ranges from 48 to 120 h, and depends
largely on TC genesis location over the WNP basin. The
pattern correlation coefficients between the distributions
of the predictability limits of the TC tracks are 0.67 and
0.70 for the TC MCP and TC MSW, respectively, which
are significant at the 0.01 level. Both meridional means of
the predictability limits of the TC MCP and MSW ob-
tained by the NLLE method are also similar to those of
the TC tracks shown by Z18, who report that the pre-
dictability limit of the TC tracks shows a gradual increase
from 100°E to 180°, as highlighted by the meridional
mean. These results essentially indicate that the TC track
is closely related to the TC intensity.

The above analysis reveals that the distributions of the
predictability limits of the TC MCP and MSW depend
largely on TC genesis location. One distinct feature in
Figs. 5a and 6a is that the predictability limits of the TC
MCP and MSW are generally lower in the SCS than east
of 120°E over the WNP, so the SCS can be considered a
separate region, based on the distribution of genesis
location in Fig. 1. In addition, we divide the area east
of 120°E over the WNP into two subregions (referred
to as the WWNP and EWNP), using as the boundary the
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(a) Spatial distribution (MACE)
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FIG. 8. (a) Spatial distribution of the TC modified accumulated cyclone energy (MACE;
103 kt?) and (b) its meridional mean profile. Note that the spatial interpolations are based on

the TC genesis location.

longitude (141°E) of the mean genesis location of all
TCs over the whole WNP basin.

Figures 7a—c show the log of mean error of the TC
MCP in the SCS, WWNP, and EWNP regions, re-
spectively. The time taken for the log of mean error of the
TC MCP to reach the saturation state gradually increases
from the SCS to EWNP. This corresponds to the pre-
dictability limit of the TC MCP, with values of around 84,
96, and 120h in the SCS, WWNP, and EWNP regions,
respectively. Similarly, the log of mean error growth of
the TC MSW in the SCS is the fastest to reach saturation
state, followed by the WWNP and then the EWNP
(Figs. 7d-f). The predictability limits of the TC MSW are
about 84, 96, and 108 h in the SCS, WWNP, and EWNP,
respectively. Clearly, there are no obvious differences in
the predictability limits of the TC MCP and MSW in the
SCS and the WWNP. However, in the EWNP, the pre-
dictability limit of the TC MCP is comparable to (but
slightly higher than) that of the TC MSW. In both cases,
the predictability limits of the TC MCP and MSW in the
EWNP are much higher than those in the SCS, which is
consistent with the characteristics of the spatial patterns
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shown in Figs. 5a and 6a. Moreover, it is also found that
the saturation level of the log of mean errors in the WNP
is much higher than in the SCS, and the errors get larger
and larger from the SCS to EWNP (Figs. 7a—f). This is
probably related to stronger TCs that form in the EWNP,
which tend to be associated with larger errors in their
evolution [e.g., rapid intensification (RI)] (Tao and
Zhang 2015; Judt and Chen 2016). The TCs that form in
the SCS appear to have a smaller error growth rate than
TCs farther east, but their error saturation occurs at a
much lower level, which yields a relatively short pre-
dictability limit. Additionally, as pointed out by Judt et al.
(2016), the error of MSW for weaker and shorter-lived
TCs likely saturates at lower values, because there is less
energy at wavenumber 0 in those storms.

b. Relationship between the predictability of TC
intensity and the modified accumulated
cyclone energy

The accumulated cyclone energy (ACE) defined by
Bell et al. (2000) has been increasingly used to measure
TC activity. The annual ACE value gives a measure not
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FIG. 9. As in Fig. 8, but for the lifetime maximum intensity (LMI, kt) and (b) its meridional
mean profile.

only of the annual number of TCs, but also their life-
times and intensities. The annual ACE is defined as
the sum of the squares of the estimated 6-hourly MSW
(in kt) for all the TCs with intensities of at least 35kt.
To illustrate why the distributions of the predictability
limits of the TC MCP and MSW depend largely on
TC genesis location, we define the modified accumu-
lated cyclone energy (MACE) to describe the individual
character of a TC’s intensity. Our definition of MACE is
similar to that in Camargo et al. (2005). In contrast to the
value of annual ACE, the MACE for each TC is calcu-
lated as the sum of the squares of the particular TC’s
MSW for all times in which the TC intensity is at least
35kt and so is independent of the annual number of TCs
in the WNP. The MACE is based on the mean lifetime
of the TC and the MACE equivalent wind speed, which
is both a physically and statistically reasonable metric of
individual TC activity.

Figure 8a shows the spatial distribution of the TC
MACE calculated at the genesis locations. Similar to
Fig. 5a, the MACE values of the TCs are interpolated
onto a 2° latitude by 2° longitude spatial grid across the
whole WNP basin. The spatial pattern of the MACE
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reflects the main characteristics of the distributions of
the predictability limit for both the TC MCP and MSW.
The spatial distribution of the TC MACE is signifi-
cantly correlated with the distribution of the pre-
dictability limits of the TC MSW (r = 0.75, significant at
the 0.01 level) and with the predictability limits of the
TC MCP (r = 0.73, significant at the 0.01 level). There
is relatively low MACE in the SCS, while high MACE
is present over the southeastern region of the WNP,
with two centers in this region. This result indicates that
the predictability limit of the TC intensities may be
associated with the TC MACE in the WNP basin.
The TC MACE contains information on both the
lifetime of the TC and its wind speed, and the nature of
TC activity depends on various characteristics of these
components. Therefore, we next analyze separately the
distributions of these components to study the possible
changes in TC activity over the WNP basin. In the best
track data, TC lifetimes depend on the definition of the
first and last records of a TC, and the TC intensity is
its lifetime maximum intensity (LMI). Figures 9a and
10a present the distributions of the lifetime and LMI
for the TCs over the whole WNP basin, respectively.
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Fi1G. 10. As in Fig. 8, but for the TC lifetime (h) and (b) its meridional mean profile.

The lifetime of a TC ranges from ~96 to 288 h, and the
LMI of the TC is between 30 and 120kt. The spatial
distribution of the TC lifetime is similar to that of the
TC LMI, and these spatial distributions are consistent
with the distribution of TC MACE shown in Fig. 8a.
We also calculated the pattern correlations between
the distributions of MACE, LMI, and lifetime over the
WNP basin (Table 1). The MACE exhibits a pattern
correlation with LMI and lifetime at 0.91 and 0.85,
respectively (both significant at the 0.01 level), in-
dicating that both of the LMI and lifetime of TC are
very relevant to the MACE of TC. Moreover, the
spatial distributions of TC lifetime and LMI appear to
depend on the genesis locations of the TCs, which
have a similar distribution to that of the TC MACE in
Fig. 8a. This result indicates that the spatial distribu-
tions of the predictability limits of the TC MCP and
MSW are related to those of the TC lifetime and LMI.
Relatively long lifetime and relatively strong TCs are
generated in the southeastern region of the WNP, cor-
responding to high TC MACE and high predictability of
TC intensity. The predictability limits of the TC MCP
and MSW appear to be lower in the SCS and the western
WNP, which also corresponds well to relatively low
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MACE, relatively short lifetime, and relatively weak in-
tensity of the TCs there. These results support our in-
terpretation of the distribution of the predictability limits
of TC intensity. It is likely that the predictability limits of
TC intensity are generally associated with changes in TC
lifetime and LMI and that a TC with a relatively long
lifetime and relatively large LMI may favor relatively
high predictability of TC intensity.

To know if uncertainty of land interaction causes
changes in the predictability of TC intensity, we further
calculate the predictability limit of intensity after re-
moving data after landfall. As shown in Fig. 11, the
predictability limits of MCP and MSW with landfall data
exhibit pattern correlation with those of TC MCP and

TABLE 1. Pattern correlations between the modified accumu-
lated cyclone energy (MACE), the lifetime maximum intensity
(LMI), and the lifetime of TCs over the WNP basin based on
observational data.

MACE LMI Lifetime
MACE 1 — —
LMI 0.91 1 —
Lifetime 0.85 0.84 1
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(a) Spatial distribution (MCP for removing data after TC landfall)
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FIG. 11. As in Fig. 5a, but for the predictability limits of TC (a) MCP and (b) MSW with TC
landfall data removed.

MSW without landfall data at 0.74 and 0.85, respectively
(both significant at the 0.01 level). In addition, the pat-
tern correlation coefficients are 0.90 and 0.94 between
the predictability limits of the TC MCP and MSW with
landfall data and their TC lifetime, which are significant
at the 0.01 level. However, the pattern correlation co-
efficients are 0.77 and 0.83, respectively (both significant
at the 0.01 level), if we do not consider the TC landfall
(without landfall data). These results still indicate that the
TC lifetime is well correlated with the predictability of
TC intensity. Meanwhile, the uncertainty of TC landfall
also has an effect on the TC intensity predictability
and is somewhat determining the zonal distribution of
the predictability, albeit the effect of land interaction is
relatively small.

The emphasis on the TC genesis location or the LMI
does not take into account the change in predictability
limit through the TC life cycle. Therefore, we further
examine how the predictability limits of intensity evolve
as a function of the time that has evolved since the TC
began. Here, the similarity criterion of finding a TC
analog is based on the similarity of location and intensity
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at the time 24, 48, 72, and 96h after TC genesis, re-
spectively (and is not based on the similarity of the initial
location and intensity at the genesis time). If the anal-
ogous TCs are found, the TC intensities predictability
are computed using the same procedure that is given in
appendix B, where the initial intensity error is the ab-
solute difference of TC intensity at the time 24, 48, 72,
and 96 h after TC genesis, respectively.

Figure 12 shows estimates of the predictability limit
of the TC MCP and MSW as a function of the time that
has evolved since the TC formed. The predictability
limit of the TC MSW gradually decreases from 108 h
at genesis time to 84 h four days after TC formation.
However, for the TC MCP, the predictability limit
shows more pronounced decrease from 102h at the
genesis time to 54h four days after TC formation.
These results indicate that the predictability limits of
the TC MCP and MSW appear to evolve in the TC life
cycle, and the TC intensities become less predictable
as they evolve since the TC formed, consistent with the
zonal gradient of TC intensity predictability shown in
Figs. 5a and 6a.
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a function of the time that has evolved since the TC formed.

4. Summary and discussion

In this work, the predictability limits of the TC MCP
and MSW over the western North Pacific (WNP) are
investigated with the observed TC best track data
using the NLLE method, which has been proposed
to evaluate atmospheric and oceanic predictability.
The predictability limit of the TC MCP obtained from
the IBTrACS dataset is ~102h, slightly lower than the
predictability limit of TC MSW, which is ~108 h. Similar
results were reported by Kieu and Moon (2016), who
found that the predictability limit of TC intensity fore-
casts was 108-120h in a low-order hurricane-scale
dynamical model (Kieu and Moon 2016), thereby ex-
ceeding the performance of most numerical and statis-
tical prediction models. Figure 13 summarizes the range
of TC track and intensity predictabilities obtained by the
NLLE approach. The predictability limits of the TC
intensities are comparable to those of the TC tracks.
These results provide a new perspective that enhances
our understanding of the predictability limits of TCs,
and is encouraging for TC prediction.
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track and intensity predictability obtained by the NLLE approach.

As these values of the limits (~102 and ~108h) are
general estimates of the predictability limits of the TC
MCP and MSW over the whole WNP basin, and TC
characteristics such as lifetime and the LMI vary widely
with genesis location, we further examined the spatial
distributions of the predictability limits of the TC MCP
and MSW. The predictability limits of both TC MCP and
MSW are relatively high in the southeastern WNP, ex-
ceeding 120 h at most locations. In contrast, the limits are
relatively low in the SCS, less than 72 h. The spatial dis-
tribution of the predictability limit appears to depend on
the TC genesis location. In addition, the distributions of
the predictability limits of TC MCP and MSW are con-
sistent with those of TC MACE, lifetime, and intensity
(LMI). The regions where the TC intensity is relatively
strong and the TC has a relatively long lifetime favor
relatively high predictability of TC MCP and MSW.

Moreover, we used the NLLE approach to perform
a quantitative analysis of how the predictability limits
of intensity evolve as a function of the time that has
evolved since the TC began. The predictability limit of
TC MSW at the genesis location (108 h) gradually drops
below the limit of 84 h at time 96 h after the TC formed,
while the predictability limit of the TC MCP with a
value of 102h rapidly falls to 54h. This result reveals
an evolving predictability limit of TC intensity through-
out the TC life cycle, and these reduced limits may be
associated with the remaining lifetime of the TCs.

There are several limitations to the present study. First,
because of the use of best track data to find the analogous
TCs and calculate the mean error growth, it is still likely
that the predictability limits of the TC MCP and MSW are
underestimated. Given the relatively short observational
records of TC best track data, some false analogs are in-
evitably in the best track data, which means that initial
errors of TC intensities can be quite large (because it is
be more difficult to identify analogous TCs). Meanwhile,
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because of the sparse observations before the 1970s when
aircraft and satellite were not available, the IBTrACS
dataset may include some estimated uncertainty of the TC
intensity, thereby possibly introducing uncertainty in esti-
mating the predictability limit over the whole WNP basin.
Consequently, our estimate of the predictability limit
of the TC tracks will inevitably include uncertainties.
Therefore, the predictability of TC intensities should be
assessed further with a longer period of observed TC best
track data or a series of idealized simulations using a more
realistic numerical model. Second, the observed TC best
track data do not contain information on large-scale en-
vironmental variables and the internal TC processes, so the
NLLE method could not be used to explore the impact of
these factors on TC intensity predictability based on the
best track data. Although the land effect is removed
through removing the landfall data, we cannot remove
land effect like in modeling studies in which the land can be
“truly” removed by artificially change the surface param-
eters. Further work will be necessary to examine their in-
fluence on the predictability of TC intensity in different
TC cases using a more realistic model.
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APPENDIX A

An Algorithm for Finding Two Analogous TCs

Let the TC {X,‘[@,‘(l‘k), %(fk)], k=0,1,2,....m—1,
i=1,2,..., N} be aset of points of TC position, where
m represents the length of a TC time series, N represents
the total number of TCs, and 6;(#;) and ¢,(t;) represent
the longitude and latitude, respectively. With continu-
ous TC position data, the distance (along a great circle)
between two independent TCs is given by

dl.].(tk) = R X arccos{sing,(t,) sin(p].(tk)

+ coso,(t,) cosq)j(tk)[ﬂi(tk)— 0j(tk)]} , (AD
where R is the average radius of Earth and #; are the
times corresponding to TC; and TC;.

The determination of two analogous TCs is based on the
initial distance d,;(fy) and the evolutionary distance d..
The algorithm used to find two analogous TCs from all TCs
over the WNP basin is briefly described as follows.
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o Step 1. Taking TC, as the reference TC, with genesis
location x1[01(%), ¢,(ty)] defined as the reference
initial position at the initial time (genesis time) ¢, we
first seek the genesis location x;[6;(t), ¢;(ty)] of TC;.
The initial distance d;;(f) is the distance between the
genesis locations of TC; and TC;. To ensure similarity
of the large-scale environmental steering flow for the
two TCs, TC; should be formed in a similar “‘season”
but in a different year to TC; (i.e., 45 days from the
genesis time of the reference TC), and the differences
in initial intensities between the TC; and TC; should
be small.

o Step 2. Within a short initial period, the evolutionary
distance d, is used to measure the degree of similarity
of the tracks of TC; and TC;. Note that in a previous
study the choice of the initial evolutionary stage
depended on the persistence of the variable of interest
(Li and Ding 2011). In the present study, because it is
impossible to obtain the persistence of the TC tracks,
we set the initial evolutionary stage as two 6-h time
steps (i.e., 12h), and found that the predictability
results of the TC tracks are not sensitive to the choice
of this parameter. Within the initial evolutionary
stage, the evolutionary distance d, between the TC;
x1[01(tx), @1(tx)] and TC; x;[0;(tx), ¢;(tx)] is given by

_ A2
K+15 (A2)

1 & 2
de = \/ 2 [dlj(tk)] , K=2,
where K is the steps of the initial evolutionary
interval, and dy;(#;) is the initial separation between
TC; x1 [91 (lk), q)l(tk)] and TC] xj[B,(tk), (pj(tk)].
 Step 3. The total distance d,, taking into account not
only the initial distance but also the evolutionary
distance, is found by adding d,;(#)) and d.:

d = dlj(to) +d,. (A3)
If d, is small, it is likely that the TCy x1[60: (%), ¢1(tc)]
and TC; x;[0;(t), ¢;(t)] are analogous TCs at the
initial time. The constraint of the total distance d,
has two components: the initial distance and evolu-
tionary distance. Such a constraint condition allows
us to exclude a large portion of all nonanalogous
TCs, and thereby find the analogous TC; for the
reference TC; over the WNP basin.

APPENDIX B
An Algorithm for Estimating NLLE and RGIE from
the Best Track Data

For every TC,, the value of total distance d; can be de-
termined using the algorithm in appendix A. The analogous
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TG, of the reference TC; is only chosen from all TCs over
the whole WNP basin if the total distance d, is small. Let
the TC [yi(%), k=0,1,2,...,M—1,i=1,2,..., N]
be a set of TC intensities at 6-hourly intervals, where M
represents the length of a TC time series, N represents the
total number of TC, and y;(#;) is the intensity at each time.

e Step 1. The initial intensity error is the absolute
difference in TC intensity between the reference TC;
vi(te), k=0,1,2,3, ..., m—1] and its analogous
TC; at genesis time, which can be denoted as follows:

Ii(t()) :yi([())_yj(to)' (Bl)
o Step 2. At time 4, =kXA (k=1,2,..., M), the M
is the total number of TC intensity points, and the
symbol A represents the time interval which is 6h in
the present study. The reference TC; will have moved
from y;(to) to yi(tx), and its analogous TC; will have
moved from y;(t) to y;(tc) (see Fig. 2b). The initial
difference I;(fy) then becomes the difference I;(¢),
which is given by
L) =y ()= y(1). (B2)
To estimate the NLLE, it is necessary to examine
the growth rate of the initial intensity error between
two initially close TCs over the whole WNP basin.
The growth rate of the initial error (absolute
difference in TC initial intensity) during the evolu-
tionary interval () is

I(t,)
I(t,)’

§I.(tk)=[lln (k=1,2,3,...,M), (B3)
k

where [;(t) is the initial error in intensity between

the reference TC; and its analogous TC;, and the

difference I;(t;) is the initial intensity error [;(¢) at

time #;. With k gradually increasing, we can obtain

the variation in &;(#;) as a function of the evolution
time t, (k=1,2,3,..., M).

 Step 3. Steps 1 and 2 are repeated for every TC, and

the growth rates of intensity error for each reference

TC{[y1(t), y2(tx), ---, yi(tx)], (=1,2,3, ..., N)} are

given by
1. I1(t)
E()=—In* (i=1,2,3,...,N;
,(k) tk Il(to) (
k=1,2,3,...,.M), (B4)

where i = N is the total number of all TCs over the
whole WNP basin, the evolution time from the
initial time # is f=kXA (k=1,2,3,..., M),
I;(ty) is the initial error of intensity between the
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reference TC and its analogous TC, and the differ-
ence I;(t;) is the initial intensity error /;(¢,) at time
(1) is the evolution of [;(fy) with evolution time
tx. It follows that the mean growth rates of the initial
intensity error for all reference TCs is given by

_ B 1 N - 1 N 1 I,‘(t)
)=y ZEW -y 2 [i ; z,.a’;)}

_ tl In \/ L) 1) | 1) (BS)

L(t) L(t,)  Iy() |

o Step 4. The mean relative growth of initial error
(RGIE) for all reference TCs is given by

=i = {0 5 8

(k=1,2,3,....M). (B6)

Note that the description of the algorithm for esti-
mating NLLE and RGIE from the best track data is
derived from that in Li and Ding (2011) and Ding et al.
(2016) with some slight modifications. In this work, the
time at which the mean error reaches 95% of the satu-
ration level can also be defined as the mean pre-
dictability limit of all TC intensities (Ding et al. 2011;
Li and Ding 2013).
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