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ABSTRACT

The predictability limits of tropical cyclone (TC) intensity over the western North Pacific (WNP) are

investigated using TC best track data. The results show that the predictability limit of the TC minimum

central pressure (MCP) is;102 h, comparable to that of the TC maximum sustained wind (MSW). The spatial

distribution of the predictability limit of the TCMCP over theWNP is similar to that of the TCMSW, and both

gradually decrease from the eastern WNP (EWNP) to the South China Sea (SCS). The predictability limits of

the TCMCP andMSWare relatively high over the southeasternWNPwhere themodified accumulated cyclone

energy (MACE) is relatively large, whereas they are relatively low over the SCS where the MACE is relatively

small. The spatial patterns of the TC lifetime and the lifetime maximum intensity (LMI) are similar to that

of the TC MACE. Strong and long-lived TCs, which have relatively long predictability, mainly form in the

southwestern WNP. In contrast, weak and short-lived TCs, which have relatively short predictability, mainly

form in the SCS. In addition to the dependence of the predictability limit on genesis location, the predictability

limits of TC intensity also evolve in the TC life cycle. The predictability limit of the TCMCP (MSW) gradually

decreases from 102 (108) h at genesis time (00 h) to 54 (84) h 4 days after TC genesis.

1. Introduction

The accuracy of tropical cyclone (TC) track and in-

tensity forecasts is of particular importance for warning

the public to protect life and property in the affected

area. The accuracy of TC track forecasts has steadily

improved in recent decades along with a global re-

duction in forecast error for operational hurricane

forecast models (Elsberry et al. 2007; DeMaria et al.

2014).However, althoughmany operational and researchCorresponding author: Dr. Ruiqiang Ding, drq@mail.iap.ac.cn
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centers have made efforts to improve TC intensity

forecasts (Gopalakrishnan et al. 2011; Zhang and

Weng 2015; Ruf et al. 2016; Weng and Zhang 2016),

the TC intensity errors have decreased at a smaller

rate than the track errors over the same period. Par-

ticularly, the TC intensity forecast skill at shorter lead

times (24–48 h) has shown relatively little improvement

(DeMaria et al. 2014).

Theremay be several reasons for this. As reported by

Landsea and Franklin (2013), the forecast error of TC

intensity at 24 h is comparable to the limit of currently

observational uncertainty of TC intensity. In addition,

accurate TC track forecasts are not as heavily de-

pendent on model physics and model resolution. Fur-

thermore, the accuracy of TC intensity forecast may be

ultimately limited by the predictability due to the

chaotic nature of the atmosphere itself (Lorenz 1963,

1969; Palmer et al. 2014; Tao and Zhang 2015; Judt

et al. 2016). To further improve forecasts of TC

intensity, it is worth determining quantitatively the

limit of predictability of TC intensity (Emanuel and

Zhang 2016).

TC intensity is not only affected by the large-scale

environment, but also by complex physical processes,

making it difficult to assess error growth and intrinsic

predictability. Many studies of the predictability of

TC intensity have used the Weather Research and

Forecasting (WRF) Model (Zhang et al. 2014; Tao and

Zhang 2015; Zhu et al. 2016), idealized axisymmet-

ric models (Hakim 2011, 2013; Kieu and Moon 2016),

and statistical forecasting models (Kaplan et al. 2015;

Emanuel and Zhang 2016). For example, Zhang and

Tao (2013) explored the influence of environmental

parameters on the predictability of TC intensity

through a series of idealized simulations using the

WRF Model and indicated that the magnitude of ver-

tical wind shear may have an effect on the accuracy of

TC intensity forecasts. Similarly, Tao and Zhang (2014)

showed the impacts of uncertainty in the vertical wind

shear and the spatial distribution of moist convection

on the evolution of TCs and found that these un-

certainties decrease the predictability of TC intensity.

Brown and Hakim (2013) and Hakim (2013) used ide-

alized simulations of a mature TC in an axisymmetric

model to examine the predictability of TC intensity,

suggesting that the intrinsic predictability of TC near-

surface winds is lost after;72 h. A recent case study by

Judt et al. (2016) indicated that the forecast error of TC

surface wind shows rapid growth of small-scale un-

certainties, but the mean vortex circulation of the TC

is comparatively resistant to upscale error growth.

Therefore, the relatively long predictability of the

environment and the mean vortex could be exploited

for longer-term predictions of TC intensity.

The above modeling studies have provided a better

understanding of TC intensity predictability, which is

helpful in improving the forecast skill of TC intensity.

However, some of the aforementioned studies are

limited, as they rely heavily on idealized numerical

models with periodic boundary conditions and/or start

from identical initial conditions (Judt et al. 2016).

While numerical models have been helpful in

assessing the influence of the uncertainty of envi-

ronmental variables on the forecast uncertainty and

predictability of TC intensity, almost all numerical

models of TCs used in previous studies (Weng and

Zhang 2016; Zhu et al. 2016), such as the WRFModel,

are imperfect, and model shortcomings hinder the

simulation of TC intensity. The estimate of TC in-

tensity predictability is significantly influenced by

model error owing to the model deficiencies; conse-

quently, such an estimate cannot truly represent the

real predictability of TC intensity. Another challenge

is that our understanding of TC intensity pre-

dictability is derived mainly from analyses of TC case

studies. Although TCs are viewed as highly episodic,

isolated events, the characteristics of TCs vary widely

with genesis location, and the spatial distribution

of the TC intensity predictability limit remains

unknown.

The goal of this study is to quantitatively determine

the predictability limit of two different measures of

TC intensity [the minimum central pressure (MCP)

and maximum sustained wind (MSW)] over the whole

western North Pacific (WNP) using observational

data (observed TC best track data in this study). This

work builds on our recent work on the predictability

of TC tracks (Zhong et al. 2018, hereafter Z18), where

we use best track data to show that the mean pre-

dictability limit of all TC tracks over the WNP basin

is ;108 h. The observed best track data include a

significant amount of position and intensity informa-

tion for TCs. Therefore, the best track data can be

used to determine the predictability limit of TC in-

tensity, as satisfactory models are not available to

predict TC intensity.

A method has been proposed to investigate the pre-

dictability of chaotic systems using the nonlinear local

Lyapunov exponent (NLLE) (Chen et al. 2006; Ding

and Li 2007). The NLLE allows the predictability limit

of dynamical systems, such as a chaotic system, to be

determined quantitatively. For a low-order chaotic sys-

tem, the leading NLLE mainly describes the average

growth rates of the initial error in the fastest-growing

direction. Meanwhile, to assess the actual atmospheric
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predictability from observational data, a practical and

efficient algorithm known as local dynamical analogs

(LDAs), has been devised to enable the calculation of

the NLLE (Li and Ding 2011). Similarly, the limit of TC

intensity predictability in this work can therefore be as-

sessed from the observed best track data using the LDAs

algorithm. Here, it should be noted that the predictability

limit of TC intensity obtained in this workwould be lower

than the intrinsic predictability, which may be achieved

only if the prediction model is perfect except for suffi-

ciently small error in the initial conditions.

The remainder of the paper is organized as follows.

Section 2 describes the observational data and introduces

the NLLE approach. The main results regarding the

predictability limit of TC intensity and its spatial distri-

bution are presented in section 3. Section 4 provides a

summary and discussion.

2. Data and methodology

a. Observational data

Tropical cyclone best track data were obtained from

the International Best Track Archive for Climate Stew-

ardship (IBTrACS) dataset, which combines the TC best

track data from all forecasting agencies into an inte-

grateddataset (https://www.ncdc.noaa.gov/ibtracs/index.php?

name5ibtracs-samples). The IBTrACS dataset consists

of the best estimates of the TC central position (latitude

and longitude), MCP, and MSW at 6-hourly intervals

(Knapp and Kruk 2010; Knapp et al. 2010). The pressure

and wind speed of the TC represent two metrics of TC

intensity, so the predictability limits of the TC MCP and

MSW are investigated separately using the best track

data.We use TC best track data for the period 1945–2015,

and the WNP basin is defined as the region 08–308N,

1008E–1808 including the South China Sea (SCS).

b. The NLLE approach

The NLLE approach can be used for quantitative

estimation of the predictability limit of atmospheric and

oceanic variables. For a variable x(t0) at time t0, the

NLLE l is defined as follows:

l[x(t
0
),d(t

0
), t]5

1

t
ln

kd(t
0
1 t)k

kd(t
0
)k , (1)

where l[x(t0), d(t0), t] depends on the initial state x(t0)

of the reference orbit in phase space, the initial error

d(t0), and the evolution time t (Chen et al. 2006; Ding

et al. 2007; Ding and Li 2007). The NLLE l mainly de-

scribes the growth rates of the initial error of the dy-

namic system. Based on the NLLE, the mean relative

growth of the initial error (RGIE), which is defined as

the ratio of the error at the evolution time t to the initial

error, can be obtained from

F[d(t
0
), t]5 expfl[d(t

0
), t]tg/P

c(N/‘) , (2)

where/
P

denotes the convergence in probability, and

l[d(t0), t] is the ensemble mean NLLE of the dynamic

FIG. 1. Spatial distribution of genesis locations of all TCs over the

whole WNP basin. The red dots denote the genesis locations of

TCs. The lines at 1208 and 1418E (the longitude of themean genesis

location of all TCs over the WNP) are the longitudinal boundaries

of the three subregions: the SCS, WWNP, and EWNP.

FIG. 2. Schematic representation of the procedure used to calculate

the NLLE from the best track data. (a) The trajectory of an analog

of the reference TC at time ti (i 5 0, 1, 2, . . . , k) is denoted as

an analogous trajectory. (b) Evolution of the intensity of an analog

of the reference TC at time ti (i 5 0, 1, 2, . . . , k) is denoted as an

analogous intensity. The growth rate of the absolute distance error

(absolute intensity error) between the reference trajectory (intensity)

and its analogous trajectory (intensity) is used to estimate the NLLE.
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system. Using the theorem fromDing and Li (2007), the

constant c can be considered as the theoretical satura-

tion level of the RGIE, when the sample size N tends to

infinity. When the mean error reaches the saturation

level, the initial information is lost and predicting the

state variables of the system becomes meaningless.

Therefore, the predictability limit can be quantitatively

determined based on the theoretical saturation value

(Ding and Li 2007), meaning that an accurate prediction

of the system’s state variables cannot be made, once the

forecast lead time is beyond this upper limit of time.

If the equations governing dynamic systems are

known, the mean NLLE can be directly obtained from

the error evolution equations of the systems. However,

the error evolution equations are not known explicitly

for the real atmosphere, because of imprecisely known

parameters and external forcing terms (Ding and Li

2007). In this case, the NLLE may be estimated from

the atmospheric observational data using the LDAs al-

gorithm (Ding et al. 2010, 2011; Li and Ding 2011;

Ding et al. 2016; Liu et al. 2016). In this study, the NLLE

method and the LDAs algorithm are applied to find the

TC analog(s) that have similar characteristics, such as

similar track and intensity, and to estimate the pre-

dictability of TC intensity.

c. Calculation of the NLLE from best track data

Figure 1 shows the spatial distribution of TC genesis

location (defined as the position of the first record of a

TC track in the best track data) over the whole WNP

basin for the period 1945–2015. More than 2000 TCs

formed during this period. For the purpose of the pres-

ent study we excluded TCs with lifetimes less than

48h and TCs with observational values of the MCP or

MSWmissing during the entire period of the TC record.

The LDAs algorithm finds the TC analog(s) over the

WNP basin using the best track data. Similar to Z18,

analogous TCs are two independent TCs with similar

location and track length, with small initial distance and

FIG. 3. The logarithm of mean error growth of all TC (a) mini-

mum central pressure (MCP) and (b) maximum sustained wind

(MSW) over the wholeWNP basin, as obtained from the IBTrACS

best track data. Note that the mean error growth as a function of

the time is calculated only for the TC at the genesis time, but not for

each time of TC life cycle. The dashed line represents the 95% level

of the saturation value, as obtained by taking the average of the

mean error growth after 144 h.

FIG. 4. Probability (%) distribution of the predictability

limit of the TC (a) minimum central pressure (MCP) and (b)

maximum sustained wind (MSW) as calculated only for the TC

at genesis time.
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evolutionary distance between their tracks.1 Analogous

TCs should also have similar initial intensity and evo-

lutionary intensity.2

In this study, the initial errors of the TC MCP and

MSW are defined as the absolute difference in the MCP

and MSW between the analogous TC and its reference

TC at the genesis time, while the error at each time point

is the absolute difference between the MCP and MSW

of the two analogous TCs in their present locations

(PLs) (Fig. 2b). The definition of the NLLE means

that the error growth rates of the TC MCP and MSW

between the reference TC and analog TC can be cal-

culated using the IBTrACS best track data. Because the

analogous TCs are based on the similarity of the genesis

location and initial intensity, the mean error growth as a

function of time is calculated only for the TC at the

genesis time but not for each time of TC life cycle.

Likewise, the estimate of the predictability limit of TC

intensity is only for the TC at the genesis time unless

otherwise stated in this paper. A detailed description of

the algorithm used to find the analogous TCs and to

estimate the NLLE using the best track data is given in

appendixes A and B.

3. Results

a. Predictability limit of TC intensity

In this study, the mean error growth represents the

mean RGIE, which is defined as the ratio of the real-

time intensity error at the evolution time to the initial

intensity error. Figures 3a and 3b show the log of mean

errors in MCP and MSW for all TCs in the WNP, based

FIG. 5. (a) Spatial distribution of the predictability limit (h) of the individual TC minimum

central pressure (MCP) and (b) the meridional mean profile of the predictability limit. Note

that the spatial interpolations are based on the TC genesis location.

1 The initial distance is a distance (along a great circle) between

the locations of the two independent TCs at genesis time, ensuring

that the genesis locations of the two independent TCs are close.

Similarly, the evolutionary distance is the averaged distance of

several present locations between the two independent TCs

evolving over an early time interval since TC formed, which is to

ensure the similarity of the trajectories of the two independent TCs

over a short period of time.
2 The initial intensity is the first record of the TC intensity, and

the evolutionary intensity is the averaged difference in intensity

between two different TCs evolving over an early time interval

since the TC formed.
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on the IBTrACS dataset. The linear evolution up to 72h

in Fig. 3 indicates that the absolute intensity error

growth was exponential, with a growth rate approxi-

mately equal to the maximal Lyapunov exponent. After

72 h, the log of mean error grows relatively slowly, de-

parting from the linear evolution and entering a non-

linear phase with a steadily decreasing growth rate with

increasing time. In this phase, the absolute intensity

error started to deviate from the exponential growth.

Finally, the curves of the log of mean errors in MCP and

MSW reach the saturation level. Similarly, Kieu and

Moon (2016) also reported that the forecast error of TC

intensity in most of the operational numerical models

grows rapidly at the initial stage, and the errors of TC

intensity ultimately reach saturation after 72 h.

The log of mean error growth may be determined by a

range of mechanisms in the different phases of error

growth. In the initial stage in which the initial error grows

linearly, the change of TC intensity may be greatly influ-

enced by the initial conditions. However, at longer ranges

the intensity and structure of a TC depend more on

the large-scale environment than on the initial conditions

(Kieu and Moon 2016). Previous studies have suggested

that such a saturation of the TC intensity error appears to

exist and may depend on specific environmental condi-

tions, physical approximations, or the type of numerical

model, such as an axisymmetric hurricane model or the

Hurricane Weather Research and Forecasting (HWRF)

Model (Yang et al. 2007; Hakim 2011, 2013).

The predictability of weather systems is limited by the

chaotic nature of the atmosphere. The saturation theorem

(Ding et al. 2010) implies that predictability is lost when

the mean error reaches the saturation limit. In the present

study, the predictability limits of the TC MCP and MSW

are defined as the time at which the error reaches 95% of

its saturation level, following Ding and Li (2007). As

shown in Figs. 3a and 3b, the predictability limit obtained

from the IBTrACS dataset for the TC MCP is ;102h,

which is comparable to (but slightly lower) than that of the

TC MSW, which has a predictability limit of 108h.

As shown above, the mean error growth and the pre-

dictability limits of TC intensity obtained by the NLLE

approach are the average results of all TCs over the

whole WNP basin. Considering that the TCs generated

in different areas may have different characteristics (e.g.,

lifetime and intensity), we further use the NLLEmethod

FIG. 6. As in Fig. 5, but for the TC (a) maximum sustained wind (MSW) and (b) its meridional

mean profile.
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to quantitatively estimate the predictability limits of the

MCP and MSW of the individual TC according to the

95% error saturation criterion. Figure 4 shows the prob-

ability distributions of the predictability limit of the TC

MCP andMSW, which are sorted from lowest to highest.

The modes of the predictability limit distribution for TC

intensity are 72h for both the TC MCP and MSW, with

maximum probability values of 25.8% and 25.2%, re-

spectively. The next highest frequencies occur at 96h and

then at 48h.

Moreover, to obtain the spatial distributions of the

predictability limits, the estimates of the predictability

limit of the individual TC MCP and MSW based upon

the TC genesis location are interpolated onto a 28 latitude
by 28 longitude spatial grid across the whole WNP.

Figures 5a and 6a show the spatial distributions of the

predictability limits of the TC MCP and MSW over

the whole WNP basin, respectively. The distributions of

the predictability limits of the TC MCP and MSW are

relatively consistent, with a pattern correlation coefficient

of 0.8, which is significant at the 0.01 level. In addition, for

both the TC MCP and MSW, the predictability limits

range from 60 to 144h over the WNP basin. There is a

relatively high predictability limit of the TC MCP over

the southeastern region of the WNP (.120h), which is

similar to the situation for the TC MSW. On the other

hand, the predictability limit of the TC MCP is relatively

low (84–108h) in the west of the WNP (120.08–140.08E),
and this is also similar to the distribution of the TCMSW.

In addition, both the TCMCP andMSW have the lowest

predictability limits (,72h) in the SCS (110.08–120.08E).

Overall, the meridional mean predictability limits of the

TC MCP and MSW are also higher in the eastern WNP

than in the SCS, and there is a gradual increase from

1008E to 1808 in both cases (Figs. 5b and 6b).

As mentioned above, the distributions of the pre-

dictability limits of the TC MCP and MSW obtained by

the NLLEmethod closely resemble the spatial pattern of

the predictability limit of the TC tracks (corresponding to

Fig. 5 inZ18), which ranges from 48 to 120h, and depends

largely on TC genesis location over the WNP basin. The

pattern correlation coefficients between the distributions

of the predictability limits of the TC tracks are 0.67 and

0.70 for the TC MCP and TC MSW, respectively, which

are significant at the 0.01 level. Bothmeridional means of

the predictability limits of the TC MCP and MSW ob-

tained by the NLLE method are also similar to those of

the TC tracks shown by Z18, who report that the pre-

dictability limit of the TC tracks shows a gradual increase

from 1008E to 1808, as highlighted by the meridional

mean. These results essentially indicate that the TC track

is closely related to the TC intensity.

The above analysis reveals that the distributions of the

predictability limits of the TC MCP and MSW depend

largely on TC genesis location. One distinct feature in

Figs. 5a and 6a is that the predictability limits of the TC

MCP andMSW are generally lower in the SCS than east

of 1208E over the WNP, so the SCS can be considered a

separate region, based on the distribution of genesis

location in Fig. 1. In addition, we divide the area east

of 1208E over the WNP into two subregions (referred

to as theWWNP and EWNP), using as the boundary the

FIG. 7. As in Fig. 3, but for the mean error growth of the TC (a)–(c) minimum central pressure (MCP) and (d)–(f) maximum sustained

wind (MSW) in the (a),(d) SCS; (b),(e) WWNP; and (c),(f) EWNP.
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longitude (1418E) of the mean genesis location of all

TCs over the whole WNP basin.

Figures 7a–c show the log of mean error of the TC

MCP in the SCS, WWNP, and EWNP regions, re-

spectively. The time taken for the log ofmean error of the

TCMCP to reach the saturation state gradually increases

from the SCS to EWNP. This corresponds to the pre-

dictability limit of the TCMCP, with values of around 84,

96, and 120h in the SCS, WWNP, and EWNP regions,

respectively. Similarly, the log of mean error growth of

the TCMSW in the SCS is the fastest to reach saturation

state, followed by the WWNP and then the EWNP

(Figs. 7d–f). The predictability limits of the TCMSW are

about 84, 96, and 108h in the SCS, WWNP, and EWNP,

respectively. Clearly, there are no obvious differences in

the predictability limits of the TC MCP and MSW in the

SCS and the WWNP. However, in the EWNP, the pre-

dictability limit of the TC MCP is comparable to (but

slightly higher than) that of the TC MSW. In both cases,

the predictability limits of the TC MCP and MSW in the

EWNP are much higher than those in the SCS, which is

consistent with the characteristics of the spatial patterns

shown in Figs. 5a and 6a. Moreover, it is also found that

the saturation level of the log of mean errors in the WNP

is much higher than in the SCS, and the errors get larger

and larger from the SCS to EWNP (Figs. 7a–f). This is

probably related to stronger TCs that form in the EWNP,

which tend to be associated with larger errors in their

evolution [e.g., rapid intensification (RI)] (Tao and

Zhang 2015; Judt and Chen 2016). The TCs that form in

the SCS appear to have a smaller error growth rate than

TCs farther east, but their error saturation occurs at a

much lower level, which yields a relatively short pre-

dictability limit.Additionally, as pointed out by Judt et al.

(2016), the error of MSW for weaker and shorter-lived

TCs likely saturates at lower values, because there is less

energy at wavenumber 0 in those storms.

b. Relationship between the predictability of TC
intensity and the modified accumulated
cyclone energy

The accumulated cyclone energy (ACE) defined by

Bell et al. (2000) has been increasingly used to measure

TC activity. The annual ACE value gives a measure not

FIG. 8. (a) Spatial distribution of the TC modified accumulated cyclone energy (MACE;

103 kt2) and (b) its meridional mean profile. Note that the spatial interpolations are based on

the TC genesis location.
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only of the annual number of TCs, but also their life-

times and intensities. The annual ACE is defined as

the sum of the squares of the estimated 6-hourly MSW

(in kt) for all the TCs with intensities of at least 35 kt.

To illustrate why the distributions of the predictability

limits of the TC MCP and MSW depend largely on

TC genesis location, we define the modified accumu-

lated cyclone energy (MACE) to describe the individual

character of a TC’s intensity. Our definition ofMACE is

similar to that in Camargo et al. (2005). In contrast to the

value of annual ACE, the MACE for each TC is calcu-

lated as the sum of the squares of the particular TC’s

MSW for all times in which the TC intensity is at least

35 kt and so is independent of the annual number of TCs

in the WNP. The MACE is based on the mean lifetime

of the TC and the MACE equivalent wind speed, which

is both a physically and statistically reasonable metric of

individual TC activity.

Figure 8a shows the spatial distribution of the TC

MACE calculated at the genesis locations. Similar to

Fig. 5a, the MACE values of the TCs are interpolated

onto a 28 latitude by 28 longitude spatial grid across the

whole WNP basin. The spatial pattern of the MACE

reflects the main characteristics of the distributions of

the predictability limit for both the TCMCP andMSW.

The spatial distribution of the TC MACE is signifi-

cantly correlated with the distribution of the pre-

dictability limits of the TCMSW (r5 0.75, significant at

the 0.01 level) and with the predictability limits of the

TC MCP (r 5 0.73, significant at the 0.01 level). There

is relatively low MACE in the SCS, while high MACE

is present over the southeastern region of the WNP,

with two centers in this region. This result indicates that

the predictability limit of the TC intensities may be

associated with the TC MACE in the WNP basin.

The TC MACE contains information on both the

lifetime of the TC and its wind speed, and the nature of

TC activity depends on various characteristics of these

components. Therefore, we next analyze separately the

distributions of these components to study the possible

changes in TC activity over the WNP basin. In the best

track data, TC lifetimes depend on the definition of the

first and last records of a TC, and the TC intensity is

its lifetime maximum intensity (LMI). Figures 9a and

10a present the distributions of the lifetime and LMI

for the TCs over the whole WNP basin, respectively.

FIG. 9. As in Fig. 8, but for the lifetime maximum intensity (LMI, kt) and (b) its meridional

mean profile.
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The lifetime of a TC ranges from ;96 to 288 h, and the

LMI of the TC is between 30 and 120 kt. The spatial

distribution of the TC lifetime is similar to that of the

TC LMI, and these spatial distributions are consistent

with the distribution of TC MACE shown in Fig. 8a.

We also calculated the pattern correlations between

the distributions of MACE, LMI, and lifetime over the

WNP basin (Table 1). The MACE exhibits a pattern

correlation with LMI and lifetime at 0.91 and 0.85,

respectively (both significant at the 0.01 level), in-

dicating that both of the LMI and lifetime of TC are

very relevant to the MACE of TC. Moreover, the

spatial distributions of TC lifetime and LMI appear to

depend on the genesis locations of the TCs, which

have a similar distribution to that of the TC MACE in

Fig. 8a. This result indicates that the spatial distribu-

tions of the predictability limits of the TC MCP and

MSW are related to those of the TC lifetime and LMI.

Relatively long lifetime and relatively strong TCs are

generated in the southeastern region of the WNP, cor-

responding to high TC MACE and high predictability of

TC intensity. The predictability limits of the TC MCP

and MSW appear to be lower in the SCS and the western

WNP, which also corresponds well to relatively low

MACE, relatively short lifetime, and relatively weak in-

tensity of the TCs there. These results support our in-

terpretation of the distribution of the predictability limits

of TC intensity. It is likely that the predictability limits of

TC intensity are generally associated with changes in TC

lifetime and LMI and that a TC with a relatively long

lifetime and relatively large LMI may favor relatively

high predictability of TC intensity.

To know if uncertainty of land interaction causes

changes in the predictability of TC intensity, we further

calculate the predictability limit of intensity after re-

moving data after landfall. As shown in Fig. 11, the

predictability limits ofMCP andMSWwith landfall data

exhibit pattern correlation with those of TC MCP and

FIG. 10. As in Fig. 8, but for the TC lifetime (h) and (b) its meridional mean profile.

TABLE 1. Pattern correlations between the modified accumu-

lated cyclone energy (MACE), the lifetime maximum intensity

(LMI), and the lifetime of TCs over the WNP basin based on

observational data.

MACE LMI Lifetime

MACE 1 — —

LMI 0.91 1 —

Lifetime 0.85 0.84 1
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MSWwithout landfall data at 0.74 and 0.85, respectively

(both significant at the 0.01 level). In addition, the pat-

tern correlation coefficients are 0.90 and 0.94 between

the predictability limits of the TC MCP and MSW with

landfall data and their TC lifetime, which are significant

at the 0.01 level. However, the pattern correlation co-

efficients are 0.77 and 0.83, respectively (both significant

at the 0.01 level), if we do not consider the TC landfall

(without landfall data). These results still indicate that the

TC lifetime is well correlated with the predictability of

TC intensity. Meanwhile, the uncertainty of TC landfall

also has an effect on the TC intensity predictability

and is somewhat determining the zonal distribution of

the predictability, albeit the effect of land interaction is

relatively small.

The emphasis on the TC genesis location or the LMI

does not take into account the change in predictability

limit through the TC life cycle. Therefore, we further

examine how the predictability limits of intensity evolve

as a function of the time that has evolved since the TC

began. Here, the similarity criterion of finding a TC

analog is based on the similarity of location and intensity

at the time 24, 48, 72, and 96h after TC genesis, re-

spectively (and is not based on the similarity of the initial

location and intensity at the genesis time). If the anal-

ogous TCs are found, the TC intensities predictability

are computed using the same procedure that is given in

appendix B, where the initial intensity error is the ab-

solute difference of TC intensity at the time 24, 48, 72,

and 96h after TC genesis, respectively.

Figure 12 shows estimates of the predictability limit

of the TCMCP andMSW as a function of the time that

has evolved since the TC formed. The predictability

limit of the TC MSW gradually decreases from 108 h

at genesis time to 84 h four days after TC formation.

However, for the TC MCP, the predictability limit

shows more pronounced decrease from 102 h at the

genesis time to 54 h four days after TC formation.

These results indicate that the predictability limits of

the TC MCP and MSW appear to evolve in the TC life

cycle, and the TC intensities become less predictable

as they evolve since the TC formed, consistent with the

zonal gradient of TC intensity predictability shown in

Figs. 5a and 6a.

FIG. 11. As in Fig. 5a, but for the predictability limits of TC (a) MCP and (b) MSW with TC

landfall data removed.
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4. Summary and discussion

In this work, the predictability limits of the TC MCP

and MSW over the western North Pacific (WNP) are

investigated with the observed TC best track data

using the NLLE method, which has been proposed

to evaluate atmospheric and oceanic predictability.

The predictability limit of the TC MCP obtained from

the IBTrACS dataset is ;102 h, slightly lower than the

predictability limit of TCMSW, which is;108 h. Similar

results were reported by Kieu and Moon (2016), who

found that the predictability limit of TC intensity fore-

casts was 108–120 h in a low-order hurricane-scale

dynamical model (Kieu and Moon 2016), thereby ex-

ceeding the performance of most numerical and statis-

tical prediction models. Figure 13 summarizes the range

of TC track and intensity predictabilities obtained by the

NLLE approach. The predictability limits of the TC

intensities are comparable to those of the TC tracks.

These results provide a new perspective that enhances

our understanding of the predictability limits of TCs,

and is encouraging for TC prediction.

As these values of the limits (;102 and ;108h) are

general estimates of the predictability limits of the TC

MCP and MSW over the whole WNP basin, and TC

characteristics such as lifetime and the LMI vary widely

with genesis location, we further examined the spatial

distributions of the predictability limits of the TC MCP

andMSW. The predictability limits of both TCMCP and

MSW are relatively high in the southeastern WNP, ex-

ceeding 120h at most locations. In contrast, the limits are

relatively low in the SCS, less than 72h. The spatial dis-

tribution of the predictability limit appears to depend on

the TC genesis location. In addition, the distributions of

the predictability limits of TC MCP and MSW are con-

sistent with those of TC MACE, lifetime, and intensity

(LMI). The regions where the TC intensity is relatively

strong and the TC has a relatively long lifetime favor

relatively high predictability of TC MCP and MSW.

Moreover, we used the NLLE approach to perform

a quantitative analysis of how the predictability limits

of intensity evolve as a function of the time that has

evolved since the TC began. The predictability limit of

TCMSW at the genesis location (108 h) gradually drops

below the limit of 84 h at time 96 h after the TC formed,

while the predictability limit of the TC MCP with a

value of 102h rapidly falls to 54 h. This result reveals

an evolving predictability limit of TC intensity through-

out the TC life cycle, and these reduced limits may be

associated with the remaining lifetime of the TCs.

There are several limitations to the present study. First,

because of the use of best track data to find the analogous

TCs and calculate the mean error growth, it is still likely

that the predictability limits of the TCMCP andMSW are

underestimated. Given the relatively short observational

records of TC best track data, some false analogs are in-

evitably in the best track data, which means that initial

errors of TC intensities can be quite large (because it is

be more difficult to identify analogous TCs). Meanwhile,

FIG. 12. Estimated predictability limit of TC (a)MCPand (b)MSWas

a function of the time that has evolved since the TC formed.

FIG. 13. Simplified diagram showing the range of estimates of TC

track and intensity predictability obtained by the NLLE approach.
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because of the sparse observations before the 1970s when

aircraft and satellite were not available, the IBTrACS

dataset may include some estimated uncertainty of the TC

intensity, thereby possibly introducing uncertainty in esti-

mating the predictability limit over the whole WNP basin.

Consequently, our estimate of the predictability limit

of the TC tracks will inevitably include uncertainties.

Therefore, the predictability of TC intensities should be

assessed further with a longer period of observed TC best

track data or a series of idealized simulations using a more

realistic numerical model. Second, the observed TC best

track data do not contain information on large-scale en-

vironmental variables and the internal TCprocesses, so the

NLLE method could not be used to explore the impact of

these factors on TC intensity predictability based on the

best track data. Although the land effect is removed

through removing the landfall data, we cannot remove

land effect like inmodeling studies inwhich the land canbe

‘‘truly’’ removed by artificially change the surface param-

eters. Further work will be necessary to examine their in-

fluence on the predictability of TC intensity in different

TC cases using a more realistic model.
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APPENDIX A

An Algorithm for Finding Two Analogous TCs

Let the TC fxi[ui(tk), ui(tk)], k5 0, 1, 2, . . . , m2 1,

i5 1, 2, . . . , Ng be a set of points of TC position, where

m represents the length of a TC time series,N represents

the total number of TCs, and ui(tk) and ui(tk) represent

the longitude and latitude, respectively. With continu-

ous TC position data, the distance (along a great circle)

between two independent TCs is given by

d
ij
(t
k
)5R3 arc cosfsinu

i
(t
k
) sinu

j
(t
k
)

1 cosu
i
(t
k
) cosu

j
(t
k
)[u

i
(t
k
)2 u

j
(t
k
)]g , (A1)

where R is the average radius of Earth and tk are the

times corresponding to TCi and TCj.

The determination of two analogous TCs is based on the

initial distance d1j(t0) and the evolutionary distance de.

The algorithmused tofind two analogousTCs fromall TCs

over the WNP basin is briefly described as follows.

d Step 1. Taking TC1 as the reference TC, with genesis

location x1[u1(t0), u1(t0)] defined as the reference

initial position at the initial time (genesis time) t0, we

first seek the genesis location xj[uj(t0), uj(t0)] of TCj.

The initial distance d1j(t0) is the distance between the

genesis locations of TC1 and TCj. To ensure similarity

of the large-scale environmental steering flow for the

two TCs, TCj should be formed in a similar ‘‘season’’

but in a different year to TC1 (i.e., 645 days from the

genesis time of the reference TC), and the differences

in initial intensities between the TC1 and TCj should

be small.
d Step 2. Within a short initial period, the evolutionary

distance de is used to measure the degree of similarity

of the tracks of TC1 and TCj. Note that in a previous

study the choice of the initial evolutionary stage

depended on the persistence of the variable of interest

(Li and Ding 2011). In the present study, because it is

impossible to obtain the persistence of the TC tracks,

we set the initial evolutionary stage as two 6-h time

steps (i.e., 12 h), and found that the predictability

results of the TC tracks are not sensitive to the choice

of this parameter. Within the initial evolutionary

stage, the evolutionary distance de between the TC1

x1[u1(tk), u1(tk)] and TCj xj[uj(tk), uj(tk)] is given by

d
e
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K1 1
�
K

k50

[d
1j
(t

k
)]2

s
, K5 2 , (A2)

where K is the steps of the initial evolutionary

interval, and d1j(tk) is the initial separation between

TC1 x1[u1(tk), u1(tk)] and TCj xj[uj(tk), uj(tk)].
d Step 3. The total distance dt, taking into account not

only the initial distance but also the evolutionary

distance, is found by adding d1j(t0) and de:

d
t
5d

1j
(t

0
)1 d

e
. (A3)

If dt is small, it is likely that the TC1 x1[u1(tk), u1(tk)]

and TCj xj[uj(tk), uj(tk)] are analogous TCs at the

initial time. The constraint of the total distance dt

has two components: the initial distance and evolu-

tionary distance. Such a constraint condition allows

us to exclude a large portion of all nonanalogous

TCs, and thereby find the analogous TCj for the

reference TC1 over the WNP basin.

APPENDIX B

An Algorithm for Estimating NLLE and RGIE from
the Best Track Data

For every TCi, the value of total distance dt can be de-

terminedusing the algorithm in appendixA.Theanalogous
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TCj of the reference TCi is only chosen from all TCs over

the whole WNP basin if the total distance dt is small. Let

the TC [yi(tk), k5 0, 1, 2, . . . , M2 1, i5 1, 2, . . . , N]

be a set of TC intensities at 6-hourly intervals, where M

represents the length of a TC time series,N represents the

total number of TC, and yi(tk) is the intensity at each time.

d Step 1. The initial intensity error is the absolute

difference in TC intensity between the reference TCi

[yi(tk), k5 0, 1, 2, 3, . . . , m2 1] and its analogous

TCj at genesis time, which can be denoted as follows:

I
i
(t

0
)5 y

i
(t
0
)2y

j
(t
0
) . (B1)

d Step 2. At time tk 5 k3D (k5 1, 2, . . . , M), the M

is the total number of TC intensity points, and the

symbol D represents the time interval which is 6 h in

the present study. The reference TCi will have moved

from yi(t0) to yi(tk), and its analogous TCj will have

moved from yj(t0) to yj(tk) (see Fig. 2b). The initial

difference Ii(t0) then becomes the difference Ii(tk),

which is given by

I
i
(t
k
)5 y

i
(t
k
)2 y

j
(t
k
) . (B2)

To estimate the NLLE, it is necessary to examine

the growth rate of the initial intensity error between

two initially close TCs over the whole WNP basin.

The growth rate of the initial error (absolute

difference in TC initial intensity) during the evolu-

tionary interval (tk) is

j
i
(t
k
)5

1

t
k

ln
I
i
(t

k
)

I
i
(t
0
)
, (k5 1, 2, 3, . . . ,M) , (B3)

where Ii(t0) is the initial error in intensity between

the reference TCi and its analogous TCj, and the

difference Ii(tk) is the initial intensity error Ii(t0) at

time tk. With k gradually increasing, we can obtain

the variation in ji(tk) as a function of the evolution

time tk (k5 1, 2, 3, . . . , M).
d Step 3. Steps 1 and 2 are repeated for every TC, and

the growth rates of intensity error for each reference

TCf[y1(tk), y2(tk), . . . , yi(tk)], (i5 1, 2, 3, . . . , N)g are
given by

j
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, (i5 1, 2, 3, . . . ,N;

k5 1, 2, 3, . . . ,M) , (B4)

where i5N is the total number of all TCs over the

whole WNP basin, the evolution time from the

initial time t0 is tk 5 k3D (k5 1, 2, 3, . . . , M),

Ii(t0) is the initial error of intensity between the

reference TC and its analogous TC, and the differ-

ence Ii(tk) is the initial intensity error Ii(t0) at time

tkIi(tk) is the evolution of Ii(t0) with evolution time

tk. It follows that themean growth rates of the initial

intensity error for all reference TCs is given by
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d Step 4. The mean relative growth of initial error

(RGIE) for all reference TCs is given by
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Note that the description of the algorithm for esti-

mating NLLE and RGIE from the best track data is

derived from that in Li and Ding (2011) and Ding et al.

(2016) with some slight modifications. In this work, the

time at which the mean error reaches 95% of the satu-

ration level can also be defined as the mean pre-

dictability limit of all TC intensities (Ding et al. 2011;

Li and Ding 2013).
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